请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

学术报告

首页 >> 学术报告 >> 正文

【学术报告】A Fast Smoothing Newton Method for Bilevel Hyperparameter Optimization in Logistic Classification

发布日期:2023-09-07    点击:

学术报告

A Fast Smoothing Newton Method for Bilevel Hyperparameter Optimization in Logistic Classification

李庆娜(北京理工大学)

报告时间:202399日星期六  1430-1515


报告地点:沙河主楼E405


报告摘要:  Logistic classification is a classical and well-performed learning method in machine learning. A regularization parameter, which significantly affects the classification performance, has to be chosen and this is usually done by the cross-validation procedure. In this paper, we reformulate the hyperparameter selection problem for logistic classification as a bilevel optimization problem in which the upper-level problem minimizes logistic loss of misclassified data points over all the cross-validation folds. The resulting bilevel optimization model is then converted to a KKT system with an extra lower bound constraint. To solve this system, we propose a smoothing Newton method, which is proved to converge to a strict local minimizer of the nonlinear system.  Extensive numerical results verify the efficiency of the proposed approach.

 

报告人简介:李庆娜,北京理工大学数学与统计学院教授,博士生导师。湖南大学本科、博士,中科院数学与系统科学研究院博士后. .曾访问英国南安普顿大学,新加坡国立大学、香港中文大学等。主持国家自然科学基金青年、面上项目等. 任中国运筹学会数学优化分会理事和北京运筹学会理事。主要研究最优化理论与算法及应用。著有专著《多维标度方法》,教材《最优化方法》、《凸分析讲义》等三部。获2020、2021北京市高校优秀毕业设计指导教师荣誉称号。2021年获北京运筹学会优秀青年论文奖.

 

邀请人:崔春风

 

快速链接

版权所有 © 2021  北京航空航天大学 数学科学学院
地址:北京市昌平区高教园南三街9号   电话:61716719