请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

学术报告

首页 >> 学术报告 >> 正文

【学术报告及微分几何讨论班(2021秋第11讲)】Combinatorial Ricci flows and special polyhedral metrics on compact triangulated surfaces

发布日期:2021-11-15    点击:

北航基础数学系学术报告

-----微分几何讨论班202111讲)


题目:Combinatorial Ricci flows and special polyhedral metrics on compact triangulated surfaces


报告人:林爱津 副教授国防科技大学


时间:20211123 10:00-11:00

腾讯会议会议号:982 7145 2005


摘要The Ricci flow is a powerful technique to deform the metrics on a manifold, which leads to many important results, e.g. the solution of Poincares conjecture. For a triangulated surface, Chow and Luo introduced the combinatorial Ricci flow and gave an alternative proof of

the celebrated Andreev-Koebe-Thurston's circle packing theorem. In this talk we will discuss some variants of Chow-Luos combinatorial Ricci flow and give some existence theorems on special polyhedral metrics on compact triangulated surfaces under some combinatorial conditions.

Our work is inspired by the recent progress (2021' Geom. Topol.) made by Feng-Ge-Hua on Thurston's "geometric ideal triangulation" conjecture by using combinatorial Ricci flow methods. This is a joint work with Prof. Huabin Ge.

 

报告人简介:林爱津,国防科技大学副教授。主要研究方向为微分几何,特别是典则度量与几何曲率流的相关研究,在国际期刊Adv. Math., JFA, JGA, MRL 等发表研究论文多篇。

 

邀请人:沈良明

 

快速链接

版权所有 © 2021  北京航空航天大学 数学科学学院
地址:北京市昌平区高教园南三街9号   电话:61716719