请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

学术报告

首页 >> 学术报告 >> 正文

【学术报告】Prandtl Boundary Layers in An Infinitely Long Convergent Channel

发布日期:2024-05-21    点击:

学术报告

Prandtl Boundary Layers in An Infinitely Long 

Convergent Channel

高宸(香港中文大学)


时间:05月23日(周四)下午14:00-15:00


地点:#腾讯会议:993-663-055


摘要: This talk is about the large Reynold number limits and asymptotic behaviors of solutions to the 2D steady Navier-Stokes equations in an infinitely long convergent channel. We will show that for a general convergent infinitely long nozzle whose boundary curves satisfy curvature-decreasing and any given finite negative mass flux, the Prandtl's viscous boundary layer theory holds in the sense that there exists a Navier-Stokes flow with no-slip boundary condition for small viscosity, which is approximated uniformly by the superposition of an Euler flow and a Prandtl flow. Moreover, the asymptotic behaviors of the solution to the Navier-Stokes equations near the vertex of the nozzle and at infinity are determined by the given flux, which is also important for the constructions of the Prandtl approximation solution due to the possible singularities at the vertex and non-compactness of the nozzle. One of the key ingredients in our analysis is that the curvature-decreasing condition on boundary curves of the convergent nozzle ensures that the limiting inviscid flow is pressure favorable and plays crucial roles in both the Prandtl expansion and the stability analysis. It is joint work with Prof. Zhouping Xin.


报告人简介: 高宸博士毕业于中国科学数学与系统科学研究院,后于北大数学中心从事博士后研究工作,如今在香港中文大学数学与科学研究所做博士后。高宸的研究兴趣集中于流体偏微分方程的边界层理论,包括Prandtl边界层理论与Prandtl-Batchelor理论。


欢迎大家参加!


快速链接

版权所有 © 2021  北京航空航天大学 数学科学学院
地址:北京市昌平区高教园南三街9号   电话:61716719