请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

学术报告

首页 >> 学术报告 >> 正文

【学术报告及微分几何讨论班(2024秋季第1讲)】On compactness of sequences of manifolds with nonnegative scalar curvature

发布日期:2024-09-25    点击:

基础数学系学术报告

--- 微分几何讨论班(2024季第1)


题目: On compactness of sequences of manifolds with nonnegative scalar curvature


报告人: 王常亮 副教授 同济大学)

时间:2024-9-26  1415-1500    

地点:沙河主E404


摘要: Gromov and Sormani conjectured that a sequence of three dimensional Riemannian manifolds with nonnegative scalar curvature and some additional uniform geometric bounds should have a subsequence which converges in some sense to a limit space with generalized notion of nonnegative scalar curvature. In this talk, I will discuss this conjecture, and report our works, joint with Brian Allen, Jiewon Park, Christina Sormani, and Wenchuan Tian, on this problem. In particular, we proved some precompactness results for sequences of warped product three dimensional manifolds with nonnegative scalar curvature, and for sequences of metrics in conformal classes.


报告人简介: 王常亮,同济大学数学科学学院特聘研究员,2016年获加州大学圣芭芭拉分校博士学位,先后在加拿大麦克马斯特大学和德国马普数学所从事博士后研究。研究领域为微分几何与几何分析,主要研究爱因斯坦度量稳定性、非负数量曲率流形收敛性等问题,已在Math. Ann., CAG, JGA, Math. Res. Lett., AGAG等国际著名期刊上发表了十多篇论文。


邀请人:张世金谢振肖


快速链接

版权所有 © 2021  北京航空航天大学 数学科学学院
地址:北京市昌平区高教园南三街9号   电话:61716719