数学学院学术报告
--- 分析、偏微分方程与动力系统讨论班(2024秋季第6讲)
报告题目: Endpoint regularity of Radon transforms associated with real analytic phases in the plane
报告人:石坐顺华 (中南大学)
时间:2024年11月13日 (周三下午) 16:00-17:00
地点:#腾讯会议:482-344-9963 会议密码:123456
摘要:The full range of Sobolev endpoint regularity of Radon transform is given. We prove the failure of endpoint regularity for real analytic phases. The critical endpoint regularity $L^p(\bR^2)\rightarrow L^p_s(\bR^2)$ is true if only and only if $p=2$. This generalizes a result of M. Christ. In particular, it implies that the Radon transform is not bounded from $L^p$ into $L^p_{1/n}$, where phase functions are $S(x,y)=a_1x^{n-1}y+a_2x^{n-2}y^2+\cdots+a_{n-1}xy^{n-1}$ with $n\geq 3$, the coefficients are real numbers satisfying $a_1a_{n-1}\neq0$, and $p$ is equal to $\frac{n}{n-1}$ or $n$. This answers a problem of Phong and Stein in \cite{PS1994}.
报告人简介:石坐顺华,中南大学副教授,研究方向为调和分析,2014 年在中国科学院大学获博士学位,曾于中国科学院数学所从事博士后研究,已在高水平数学期刊发表论文十余篇。
欢迎大家参加!