请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

学术报告

首页 >> 学术报告 >> 正文

【基础数学科研教学交流论坛(2024秋季第1、2、3讲)】闭曲面上的里奇流

发布日期:2024-12-04    点击:

基础数学科研教学交流论坛

2024秋季第1、2、3

题目:曲面上的里奇流

报告人:张世金 教授基础数学系

时间:2024年12月12日(周四)、20(周五)、25周三 13:45-14:45

地点:沙河主E404

摘要:本系列报告主要是关于2维闭流形即闭曲面上里奇流的介绍特别是闭曲面分类定理的里奇流证明方法第一讲简要介绍里奇流的一般理论和欧拉数小于零的曲面上里奇流的收敛性第二讲介绍欧拉数等于0和大于零情形下的收敛性第三讲继续介绍大于零情形下的收敛性本系列报告的参考论文来源于HamiltonBen Chow。

报告人简介:张世金,北数学学院基础数学系副教授。主要研究几何分析中的里奇流里奇孤立子的性质,已经在 Trans. AMS, Math. Z., Proc. AMS,  Pacific J. Math., Results Math. , JFA等国际著名数学期刊上发表了10多篇论文。目前正主持一项国家自然科学基金面上项目



快速链接

版权所有 © 2021  北京航空航天大学 数学科学学院
地址:北京市昌平区高教园南三街9号   电话:61716719