请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

学术报告

首页 >> 学术报告 >> 正文

【学术报告及分析、偏微分方程与动力系统讨论班(2025春季第1讲)】Sharp local Lp estimates for the Hermite eigenfunctions

发布日期:2025-03-07    点击:

数学科学学院学术报告

--- 分析、偏微分方程与动力系统讨论班(2025春季第1)


Sharp local Lp estimates for the Hermite eigenfunctions

王兴(湖南大学)

时间20250310(周下午15:30-16:30

地点:点击链接直接加入会议:

https://meeting.tencent.com/p/4823449963

#腾讯会议:482-344-9963 会议密码:123456


摘要: We investigate the concentration of eigenfunctions for the Hermite operator −∆ + |x|^2 in Rn by establishing local Lp bounds over the compact sets with arbirary dilations and translations. These new results extend the local estimates by Thangavelu [49] and improve those derived from Koch-Tataru [35], and explain the special phenomenon that the global Lp bounds decrease in p when 2 ≤ p ≤ (2 n+6)/( n +1). The key L2 -estimates show that the local probabilities decrease away from the boundary {|x| = λ}, and then they satisfy Bohr’s coorespondence principle in any dimension. The proof uses the Hermite spectral projection operator represented by Mehler’s formula for the Hermite-Sch¨ordinger propagator e^{−itH}, and the strategy developed by Thangavelu and Jeong-Lee-Ryu. We also exploit an explicit version of the stationary phase lemma and H¨ormander’s L2 oscillatory integral theorem. Using

Koch-Tataru’s strategy, we construct appropriate examples to illustrate the possible concentrations and show the optimality of our local estimates.


报告人简介: 王兴,湖南大学数学学院副教授。美国约翰霍普金斯大学博士学位,师从Christopher Sogge 教授.主要研究方向是流形上的调和分析及算子谱的渐近性质,Advances in Mathematics, Canadian Journal of Mathematics, Proceedings of the American Mathematical Society,Mathematical Research Letters 等学术知名期刊上发表多篇学术论文。


欢迎大家参加!


快速链接

版权所有 © 2021  北京航空航天大学 数学科学学院
地址:北京市昌平区高教园南三街9号   电话:61716719