北航数学论坛学术报告
Value of Moment Information in Wasserstein Distributionally Robust Optimization
陈彩华
(南京大学)
报告时间:16:00-17:00,2025-03-21(星期五)
报告地点: 沙河E-802
内容简介:Data-driven optimization often relies on limited sample data, making the trade-off between numerical tractability and information richness a critical consideration. In this paper, we propose a composite ambiguity set that integrates Wasserstein distance with first-order moment information. We begin by quantifying the volume of this ambiguity set under a family of Gaussian distributions. Then, through a non-asymptotic analysis, we evaluate out-of-sample performance, showing that incorporating moment information enhances the robustness of Wasserstein-based distributionally robust optimization. Our findings suggest that with carefully selected parameters, superior performance can be achieved even with limited data. Finally, we develop a tailored algorithm for this framework. Numerical experiments in portfolio selection with real-world data validate the effectiveness of our approach.
报告人简介:陈彩华,国家级青年基金获得者、国家自然科学基金重大项目课题负责人、美国斯坦福大学访问学者,现任南京大学教授、博士生导师、工程管理学院副院长、民建江苏省委大数据与人工智能委员会主任。南京大学理学博士,新加坡国立大学联合培养博士。从事大数据分析与决策、优化算法设计与应用、数据驱动的决策等研究,获华人数学家联盟最佳论文奖(2017、2018),中国运筹学会青年科技奖(2018),南京大学青年五四奖章(2019),南京大学青年五四奖章集体(2024)。
邀请人:韩德仁