请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

学术报告

首页 >> 学术报告 >> 正文

【数学论坛及分析、偏微分方程与动力系统讨论班(2025春季第16讲)】Spectral distribution for the twisted Laplacian on hyperbolic surfaces

发布日期:2025-06-19    点击:

北航数学论坛学术报告

--- 分析、偏微分方程与动力系统讨论班(2025春季第16)


Spectral distribution for the twisted Laplacian on hyperbolic surfaces

金龙(清华大学)


时间202506月23(周一)下午15:00-16:00

地点:沙河主楼 E806


摘要In this talk, we discuss the spectrum of the twisted Laplacian operator on a compact hyperbolic surface. The twisted Laplacian associated with a harmonic form is obtained by conjugating the usual Laplacian-Beltrami operator by an integral of the harmonic form. It is also the Bochner Laplacian associated with the corresponding one-dimensional representation. When the harmonic form is real, the twisted Laplacian is non-self-adjoint but still has discrete spectrum in the complex plane. We will review its spectral theory and connection with the twisted Selberg zeta function. In particular, we show that although most of the spectrum is concentrated near the real axis, there are infinite many eigenvalues away from the real axis, at least when the harmonic form is large enough. This implies the failure of the asymptotic version of Riemann hypotheses for the twisted Selberg zeta function as well as the failure of quantum unique ergodicity. This is joint work with Gong Yulin.


报告人简介: 金龙,现任清华大学数学中心副教授。2010年本科毕业于北京大学,2015年博士毕业于加州大学伯克利分校,导师为Maciej Zworski。2015-2018年先后在哈佛大学和普度大学博士后工作。2018年起在清华大学工作。研究领域为微局部分析,谱理论和散射理论。主要工作发表于Acta Math.,Journal of AMS, Math. Ann., Comm. Math. Phys., Trans. AMS, Analysis & PDE等。


欢迎大家参加!


快速链接

版权所有 © 2021  北京航空航天大学 数学科学学院
地址:北京市昌平区高教园南三街9号   电话:61716719