北航数学论坛学术报告
The Distributionally Robust Optimization Model of Sparse Principal Component Analysis
刘歆
(中国科学院数学与系统科学研究院)
报告时间:10:00-11:00,2025-05-15(星期四)
报告地点:沙河主楼E-806
内容简介:We consider sparse principal component analysis (PCA) under a stochastic setting where the underlying probability distribution of the random parameter is uncertain. This problem is formulated as a distributionally robust optimization (DRO) model based on a constructive approach to capturing uncertainty in the covariance matrix, which constitutes a nonsmooth constrained min-max optimization problem. We further prove that the inner maximization problem admits a closed-form solution, reformulating the original DRO model into an equivalent minimization problem on the Stiefel manifold. This transformation leads to a Riemannian optimization problem with intricate nonsmooth terms, a challenging formulation beyond the reach of existing algorithms. To address this issue, we devise an efficient smoothing manifold proximal gradient algorithm. We prove the Riemannian gradient consistency and global convergence of our algorithm to a stationary point of the nonsmooth minimization problem. Moreover, we establish the iteration complexity of our algorithm. Finally, numerical experiments are conducted to validate the effectiveness and scalability of our algorithm, as well as to highlight the necessity and rationality of adopting the DRO model for sparse PCA.
报告人简介:
刘歆,中国科学院数学与系统科学研究院研究员,博士生导师,计算数学与科学工程计算研究所副所长。
刘歆2004年本科毕业于北京大学数学科学学院;并于2009年在中国科学院数学与系统科学研究院获得博士学位。主要研究方向包括流形优化、分布式优化及其在材料计算、大数据分析和机器学习等领域的应用。刘歆分别于2016年,2021年和2023年获得国家级青年人才、国家级人才和科技部重点专项的资助。2024年获得中国工业与应用数学学会萧树铁应用数学奖。现担任MPC, JCM, APJOR等国内外期刊编委,《中国科学·数学》(中英文)青年编委,《计算数学》副主编;中国科学院青年创新促进会理事长;中国运筹学会常务理事;中国工业与应用数学会副秘书长,中国数学会计算数学分会常务理事。
邀请人:夏勇 崔春风